Author:
Ban Choongjin,Park Joon-Bum,Cho Sora,Kim Hye Rin,Kim Yong Joon,Choi Young Jin,Chung Woo-Jae,Kweon Dae-Hyuk
Abstract
AbstractMyricetin—a flavonoid capable of inhibiting the SNARE complex formation in neurons—reduces focal sweating after skin-application when delivers as encapsulated in lipid nanoparticles (M-LNPs). The stability of M-LNP enables efficient delivery of myricetin to sudomotor nerves located underneath sweat glands through transappendageal pathways while free myricetin just remained on the skin. Furthermore, release of myricetin from M-LNP is accelerated through lipase-/esterase-induced lipolysis in the skin-appendages, enabling uptake of myricetin by the surrounding cells. The amount of sweat is reduced by 55% after application of M-LNP (0.8 mg kg−1) on the mouse footpad. This is comparable to that of subcutaneously injected anticholinergic agents [0.25 mg kg−1 glycopyrrolate; 0.8 U kg−1 botulinum neurotoxin-A-type (BoNT/A)]. M-LNP neither shows a distal effect after skin-application nor induced cellular/ocular toxicity. In conclusion, M-LNP is an efficient skin-applicable antiperspirant. SNARE-inhibitory small molecules with suitable delivery systems have the potential to replace many BoNT/A interventions for which self-applications are preferred.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献