Development of antibacterial neural stimulation electrodes via hierarchical surface restructuring and atomic layer deposition

Author:

Khosla Henna,Seche Wesley,Ammerman Daniel,Elyahoodayan Sahar,Caputo Gregory A.,Hettinger Jeffrey,Amini Shahram,Feng Gang

Abstract

AbstractMiniaturization and electrochemical performance enhancement of electrodes and microelectrode arrays in emerging long-term implantable neural stimulation devices improves specificity, functionality, and performance of these devices. However, surgical site and post-implantation infections are amongst the most devastating complications after surgical procedures and implantations. Additionally, with the increased use of antibiotics, the threat of antibiotic resistance is significant and is increasingly being recognized as a global problem. Therefore, the need for alternative strategies to eliminate post-implantation infections and reduce antibiotic use has led to the development of medical devices with antibacterial properties. In this work, we report on the development of electrochemically active antibacterial platinum-iridium electrodes targeted for use in neural stimulation and sensing applications. A two-step development process was used. Electrodes were first restructured using femtosecond laser hierarchical surface restructuring. In the second step of the process, atomic layer deposition was utilized to deposit conformal antibacterial copper oxide thin films on the hierarchical surface structure of the electrodes to impart antibacterial properties to the electrodes with minimal impact on electrochemical performance of the electrodes. Morphological, compositional, and structural properties of the electrodes were studied using multiple modalities of microscopy and spectroscopy. Antibacterial properties of the electrodes were also studied, particularly, the killing effect of the hierarchically restructured antibacterial electrodes on Escherichia coli and Staphylococcus aureus—two common types of bacteria responsible for implant infections.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3