Author:
Zhang Xinyue,He Peiyun,Guo Rongyu,Huang Kaifeng,Huang Xiaoyan
Abstract
AbstractThis study aims to clarify the effects of different concentrations of sodium chloride on the carbon and nitrogen metabolism and yield of Tartary buckwheat. The salt-sensitive cultivar Yunqiao 2 was pot-grown and treated with four salt concentrations including 0, 2, 4, and 6 g kg−1. The root morphology index increased from seedling stage to maturate stage. The content of soluble protein in the leaves reached the maximum at the anthesis stage, and the other substances content and the enzymes activity related to carbon and nitrogen metabolism reached the maximum at the grain filling stage. The root morphology index, root activity; invertase, amylase, sucrose synthase, and sucrose phosphate synthase activities; nitrate-nitrogen, ammonium nitrogen, and soluble protein content; and nitrate reductase and glutamate synthase activities increased first and reached the maximum at 2 g kg−1 treatment and then decreased with increasing salt stress concentration. The content of soluble sugars and sucrose and the activity of glutamate dehydrogenase increased continuously with increasing salt concentration, and reached the maximum in the 6 g kg−1 treatment. The grain number per plant, 100-grain weight, and yield per plant increased first and reached the maximum at 2 g kg−1 treatment and then decreased with increasing salt stress concentration. In summary, moderate salt stress (2 g kg−1) can promote the root growth, increase the content of carbon and nitrogen metabolism-related substances and enzyme activity, and increase the yield per plant of Tartary buckwheat.
Funder
The Science and Technology Support Plan of Guizhou Province, China
The Program of Scientific and Technology Innovation Team of Guizhou Education Department of China
The National Natural Science Foundation of China
Program of High-level Innovation Talents, Guizhou Province, China
Guizhou Normal University Academic New Seedling Fund Project
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献