Author:
Shen Yao,Ha Wootae,Zeng Wangyong,Queen Dawn,Liu Liang
Abstract
AbstractCanonical ultraviolet (UV) mutation type and spectra are traditionally defined by direct sequencing-based approaches to map mutations in a limited number of representative DNA elements. To obtain an unbiased view of genome wide UV mutation features, we performed whole exome-sequencing (WES) to profile single nucleotide substitutions in UVB-irradiated primary human keratinocytes. Cross comparison of UV mutation profiles under different UVB radiation conditions revealed that T > C transition was highly prevalent in addition to C > T transition. We also identified 5′-ACG-3′ as a common sequence motif of C > T transition. Furthermore, our analyses uncovered several recurring UV mutations following acute UVB radiation affecting multiple genes including HRNR, TRIOBP, KCNJ12, and KMT2C, which are frequently mutated in skin cancers, indicating their potential role as founding mutations in UV-induced skin tumorigenesis. Pretreatment with trichostatin A, a pan-histone deacetylase inhibitor that renders chromatin decondensation, significantly decreased the number of mutations in UVB-irradiated keratinocytes. Unexpectedly, we found trichostatin A to be a mutagen that caused DNA damage and mutagenesis at least partly through increased reactive oxidation. In summary, our study reveals new UV mutation features following acute UVB radiation and identifies novel UV mutation hotspots that may potentially represent founding driver mutations in skin cancer development.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Prevent Cancer Foundation
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献