Lithium response in bipolar disorder correlates with improved cell viability of patient derived cell lines

Author:

Paul PradipORCID, ,Iyer Shruti,Nadella Ravi KumarORCID,Nayak Rashmitha,Chellappa Anirudh S.,Ambardar Sheetal,Sud Reeteka,Sukumaran Salil K.,Purushottam Meera,Jain Sanjeev,Viswanath BijuORCID

Abstract

AbstractLithium is an effective, well-established treatment for bipolar disorder (BD). However, the mechanisms of its action, and reasons for variations in clinical response, are unclear. We used neural precursor cells (NPCs) and lymphoblastoid cell lines (LCLs), from BD patients characterized for clinical response to lithium (using the “Alda scale” and “NIMH Retrospective Life chart method”), to interrogate cellular phenotypes related to both disease and clinical lithium response. NPCs from two biologically related BD patients who differed in their clinical response to lithium were compared with healthy controls. RNA-Seq and analysis, mitochondrial membrane potential (MMP), cell viability, and cell proliferation parameters were assessed, with and without in vitro lithium. These parameters were also examined in LCLs from 25 BD patients (16 lithium responders and 9 non-responders), and 12 controls. MMP was lower in both NPCs and LCLs from BD; but it was reversed with in vitro lithium only in LCLs, and this was unrelated to clinical lithium response. The higher cell proliferation observed in BD was unaffected by in vitro lithium. Cell death was greater in BD. However, LCLs from clinical lithium responders could be rescued by addition of in vitro lithium. In vitro lithium also enhanced BCL2 and GSK3B expression in these cells. Our findings indicate cellular phenotypes related to the disease (MMP, cell proliferation) in both NPCs and LCLs; and those related to clinical lithium response (cell viability, BCL2/GSK3B expression) in LCLs.

Funder

Department of Biotechnology, Ministry of Science and Technology

Department of Science and Technology, Ministry of Science and Technology

DST | Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3