Photogenerated Carrier Transport Properties in Silicon Photovoltaics

Author:

Uprety PrakashORCID,Subedi Indra,Junda Maxwell M.,Collins Robert W.,Podraza Nikolas J.

Abstract

AbstractElectrical transport parameters for active layers in silicon (Si) wafer solar cells are determined from free carrier optical absorption using non-contacting optical Hall effect measurements. Majority carrier transport parameters [carrier concentration (N), mobility (μ), and conductivity effective mass (m*)] are determined for both the n-type emitter and p-type bulk wafer Si of an industrially produced aluminum back surface field (Al-BSF) photovoltaic device. From measurements under 0 and ±1.48 T external magnetic fields and nominally “dark” conditions, the following respective [n, p]-type Si parameters are obtained: N = [(3.6 ± 0.1) × 1018 cm−3, (7.6 ± 0.1) × 1015 cm−3]; μ = [166 ± 6 cm2/Vs, 532 ± 12 cm2/Vs]; and m* = [(0.28 ± 0.03) × me, (0.36 ± 0.02) × me]. All values are within expectations for this device design. Contributions from photogenerated carriers in both regions of the p-n junction are obtained from measurements of the solar cell under “light” 1 sun illumination (AM1.5 solar irradiance spectrum). From analysis of combined dark and light optical Hall effect measurements, photogenerated minority carrier transport parameters [minority carrier concentration (Δp or Δn) and minority carrier mobility (μh or μe)] under 1 sun illumination for both n- and p-type Si components of the solar cell are determined. Photogenerated minority carrier concentrations are [(7.8 ± 0.2) × 1016 cm−3, (2.2 ± 0.2) × 1014 cm−3], and minority carrier mobilities are [331 ± 191 cm2/Vs, 766 ± 331 cm2/Vs], for the [n, p]-type Si, respectively, values that are within expectations from literature. Using the dark majority carrier concentration and the effective equilibrium minority carrier concentration under 1 sun illumination, minority carrier effective lifetime and diffusion length are calculated in the n-type emitter and p-type wafer Si with the results also being consistent with literature. Solar cell device performance parameters including photovoltaic device efficiency, open circuit voltage, fill factor, and short circuit current density are also calculated from these transport parameters obtained via optical Hall effect using the diode equation and PC1D solar cell simulations. The calculated device performance parameters are found to be consistent with direct current-voltage measurement demonstrating the validity of this technique for electrical transport property measurements of the semiconducting layers in complete Si solar cells. To the best of our knowledge, this is the first method that enables determination of both minority and majority carrier transport parameters in both active layers of the p-n junction in a complete solar cell.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3