Performance of the hematology analyzer XN-31 prototype in the detection of Plasmodium infections in an endemic region of Colombia

Author:

Zuluaga-Idárraga Lina,Rios Alexandra,Sierra-Cifuentes Verónica,Garzón Edwar,Tobón-Castaño Alberto,Takehara Ikki,Toya Yuji,Izuka Munehisa,Uchihashi Kinya,Lopera-Mesa Tatiana M.

Abstract

AbstractEarly and accurate diagnosis is critical in reducing the morbidity and mortality associated with malaria. Microscopy (MI) is the current diagnostic gold standard in the field; however, it requires expert personnel, is time-consuming, and has limited sensitivity. Although rapid diagnostic tests for antigen detection (RDTs) are an alternative to diagnosis, they also have limited sensitivity and produce false positive results in detecting recent past infection. The automated hematology analyzer XN-31 prototype (XN-31p) (Sysmex Corporation, Kobe, Japan) is able to identify plasmodium-infected erythrocytes, count parasitemia and perform complete blood-cell counts within one minute. The performance of the XN-31p in diagnosing malaria was evaluated and compared with real-time polymerase chain reaction (qPCR), MI and RDT in an endemic area of Colombia where Plasmodium falciparum and Plasmodium vivax are present. Acute febrile patients were enrolled from July 2018 to April 2019 in Quibdó, Colombia. Malaria diagnoses were obtained from MI and RDT in the field and later confirmed by qPCR. Venous blood samples in EDTA were processed with an XN-31p in the field. Sensitivity, specificity, positive/negative predictive values, and the likelihood ratios of positive and negative tests were calculated with respect to the results from qPCR, MI and RDT. The intraclass correlation coefficient (ICC) and Bland–Altman plot were used to evaluate the concordance in the parasitemia with respect to MI. A total of 1,754 subjects were enrolled. The mean age was 27.0 years (IQR 14–44); 89.6% were Afro-Colombians, 94.3% lived in urban areas and 0.91% were pregnant. With respect to qPCR, the XN-31p showed a sensitivity of 90% (95% CI 87.24–92.34) and a specificity of 99.83% (95% CI 99.38–99.98) in detecting Plasmodium spp.; both parameters were equivalent to those for MI and RDT. Using MI as the reference, the XN-31p showed a sensitivity of 98.09% (95% CI 96.51–99.08), a specificity of 99.83% (95% CI 99.4–99.98), an ICC of 0.85 (95% CI 0.83–0.87) and an average difference of − 3096 parasites/µL when compared with thick-smear MI and an ICC of 0.98 (95% CI 0.97–0.98) and an average difference of − 0.0013% when compared with thin-smear MI. The XN-31p offers a rapid and accurate alternative method for diagnosing malaria in clinical laboratories in areas where P. falciparum and P. vivax cocirculate.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3