Maximising recombination across macadamia populations to generate linkage maps for genome anchoring

Author:

Langdon Kirsty S.ORCID,King Graham J.ORCID,Baten Abdul,Mauleon Ramil,Bundock Peter C.,Topp Bruce L.,Nock Catherine J.ORCID

Abstract

AbstractThe Proteaceae genus Macadamia has a recent history of domestication as a commercial nut crop. We aimed to establish the first sequence-based haploid-correlated reference genetic linkage maps for this primarily outcrossing perennial tree crop, with marker density suitable for genome anchoring. Four first generation populations were used to maximise the segregation patterns available within full-sib, biparental and self-pollinated progeny. This allowed us to combine segregation data from overlapping subsets of >4,000 informative sequence-tagged markers to increase the effective coverage of the karyotype represented by the recombinant crossover events detected. All maps had 14 linkage groups, corresponding to the Macadamia haploid chromosome number, and enabled the anchoring and orientation of sequence scaffolds to construct a pseudo-chromosomal genome assembly for macadamia. Comparison of individual maps indicated a high level of congruence, with minor discrepancies satisfactorily resolved within the integrated maps. The combined set of maps significantly improved marker density and the proportion (70%) of the genome sequence assembly anchored. Overall, increasing our understanding of the genetic landscape and genome for this nut crop represents a substantial advance in macadamia genetics and genomics. The set of maps, large number of sequence-based markers and the reconstructed genome provide a toolkit to underpin future breeding that should help to extend the macadamia industry as well as provide resources for the long term conservation of natural populations in eastern Australia of this unique genus.

Funder

Horticulture Australia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3