Effect of C content on the microstructure and properties of in-situ synthesized TiC particles reinforced Ti composites

Author:

Wang Ning,Choi Yongbum,Matsugi Kazuhiro

Abstract

AbstractTitanium matrix composites (TMCs) have garnered substantial attention from researchers owing to their outstanding properties. Nonetheless, the strength and ductility of TMCs hardly co-exist and often show a trade-off between each other. In this study, we employ an ultra-thin graphite powder sheet as the carbon source and employ Ti/C composites with varying carbon contents, prepared via a layer-stacked laminated sintering method, to ensure a comprehensive in-situ reaction and uniform reinforcement distribution. With increasing carbon content, noticeable alterations occur in the size, concentration, and morphology of the titanium carbide (TiC) particles. The increase of TiC particle content is found to boost the ultimate tensile strength of the composite. However, this improvement comes at the expense of reduced elongation. Notably, as the carbon content reaches 1.81 wt%, the yield strength and ultimate tensile strength of the composites soar to 354.4 MPa and 575.4 MPa, respectively. These values represent a remarkable increase of 75.4% and 65.0% compared to pure titanium, while maintaining an acceptable elongation of 6.45%. This study unveils a promising approach for significantly enhancing the mechanical properties of titanium alloys.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3