A method for continuous study of soaring and windhovering birds

Author:

Penn Matthew,Yi George,Watkins Simon,Martinez Groves-Raines Mario,Windsor Shane P.,Mohamed Abdulghani

Abstract

AbstractAvian flight continues to inspire aircraft designers. Reducing the scale of autonomous aircraft to that of birds and large insects has resulted in new control challenges when attempting to hold steady flight in turbulent atmospheric wind. Some birds, however, are capable of remarkably stable hovering flight in the same conditions. This work describes the development of a wind tunnel configuration that facilitates the study of flapless windhovering (hanging) and soaring bird flight in wind conditions replicating those in nature. Updrafts were generated by flow over replica “hills” and turbulence was introduced through upstream grids, which had already been developed to replicate atmospheric turbulence in prior studies. Successful flight tests with windhovering nankeen kestrels (Falco cenchroides) were conducted, verifying that the facility can support soaring and wind hovering bird flight. The wind tunnel allows the flow characteristics to be carefully controlled and measured, providing great advantages over outdoor flight tests. Also, existing wind tunnels may be readily configured using this method, providing a simpler alternative to the development of dedicated bird flight wind tunnels such as tilting wind tunnels, and the large test section allows for the replication of orographic soaring. This methodology holds promise for future testing investigating the flight behaviour and control responses employed by soaring and windhovering birds.

Funder

Australian Government Research Training Program Scholarship

Australian Defence Science Institute

USAF Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steady as they hover: kinematics of kestrel wing and tail morphing during hovering flights;Journal of Experimental Biology;2024-08-01

2. AOSoar: Autonomous Orographic Soaring of a Micro Air Vehicle;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3