Digitalization of hydraulic rotary drilling process for continuously mechanical profiling of siliciclastic sedimentary rocks

Author:

Wang X. F.,Zhang Z. J.,Yue W. V.,Yue Z. Q.

Abstract

AbstractHydraulic rotary drilling can offer the essential information and core samplesa for the researches on solid earth. Recording the factual field drilling data and analyzing the hydraulic rotary coring process are challenging yet promising to utilize the massive drilling information in geophysics and geology. This paper adopts the drilling process monitoring (DPM) technique and records the four parameters of displacement, thrust pressure, upward pressure, and rotation speed in real-time series for profiling the siliciclastic sedimentary rocks along 108 m deep drillhole. The digitalization results with 107 linear zones represent the spatial distribution of drilled geomaterials including superficial deposits (fill, loess, gravelly soil), mudstone, silty mudstone, gritstone, and fine sandstone. The constant drilling speeds varying from 0.018 to 1.905 m/min present the in-situ coring resistance of drilled geomaterials. Furthermore, the constant drilling speeds can identify the strength quality of soils to hard rocks. The thickness distributions of the six basic strength quality grades are presented for all the sedimentary rocks and each individual type of the seven soil and rocks. The in-situ strength profile determined in this paper can be used to assess and evaluate the in-situ mechanical behavior of geomaterial along the drillhole and can provide a new mechanical-based assessment for determining the spatial distribution of geological strata and structures in subsurface. They are important since the same stratum at different depths can have different mechanical behavior. The results provide a novel quantitative measurement for continuously in-situ mechanical profiling by digital drilling data. The findings of the paper can offer a new and effective method for refinement and upgrading of in-situ ground investigation, and can provide researchers and engineers with a novel tool and valuable reference to digitize and utilize factual data of current drilling projects.

Funder

Research Grant Council of the Hong Kong Special Administrative Region

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3