Applying Ultrashort Pulsed Direct Laser Interference Patterning for Functional Surfaces

Author:

Müller Daniel Wyn,Fox Tobias,Grützmacher Philipp G.ORCID,Suarez SebastianORCID,Mücklich Frank

Abstract

AbstractSurface structures in the micro- and nanometre length scale exert a major influence on performance and functionality for many specialized applications in surface engineering. However, they are often limited to certain pattern scales and materials, depending on which processing technique is used. Likewise, the morphology of the topography is in complex relation to the utilized processing methodology. In this study, the generation of hierarchical surface structures in the micro- as well as the sub-micrometre scale was achieved on ceramic, polymer and metallic materials by utilizing Ultrashort Pulsed Direct Laser Interference Patterning (USP-DLIP). The morphologies of the generated patterns where examined in relation to the unique physical interaction of each material with ultrashort pulsed laser irradiation. In this context, the pattern formation on copper, CuZn37 brass and AISI 304 stainless steel was investigated in detail by means of a combination of experiment and simulation to understand the individual thermal interactions involved in USP-DLIP processing. Thereby, the pattern’s hierarchical topography could be tailored besides achieving higher process control in the production of patterns in the sub-µm range by USP-DLIP.

Funder

EC | European Regional Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3