Topological transitions in an oscillatory driven liquid crystal cell

Author:

Clerc Marcel G.ORCID,Kowalczyk Michał,Zambra Valeska

Abstract

Abstract Matter under different equilibrium conditions of pressure and temperature exhibits different states such as solid, liquid, gas, and plasma. Exotic states of matter, such as Bose–Einstein condensates, superfluidity, chiral magnets, superconductivity, and liquid crystalline blue phases are observed in thermodynamic equilibrium. Rather than being a result of an aggregation of matter, their emergence is due to a change of a topological state of the system. These topological states can persist out of thermodynamics equilibrium. Here we investigate topological states of matter in a system with injection and dissipation of energy by means of oscillatory forcing. In an experiment involving a liquid crystal cell under the influence of a low-frequency oscillatory electric field, we observe a transition from a non-vortex state to a state in which vortices persist, topological transition. Depending on the period and the type of the forcing, the vortices self-organise, forming square lattices, glassy states, and disordered vortex structures. The bifurcation diagram is characterised experimentally. A continuous topological transition is observed for the sawtooth and square forcings. The scenario changes dramatically for sinusoidal forcing where the topological transition is discontinuous, which is accompanied by serial transitions between square and glassy vortex lattices. Based on a stochastic amplitude equation, we recognise the origin of the transition as the balance between stochastic creation and deterministic annihilation of vortices. Numerical simulations show topological transitions and the emergence of square vortex lattice. Our results show that the matter maintained out of equilibrium by means of the temporal modulation of parameters can exhibit exotic states.

Funder

Fondecyt project

Millennium Institute for Research in Optics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference52 articles.

1. Goodstein, D. L. States of Matter (Dover publications, New York, 1985).

2. Pethick, C. J. & Smith, H. Bose–Einstein condensation in dilute gases (Cambridge University Press, New York, 2008).

3. Tsuneto, T. Superconductivity and superfluidity (Cambridge University Press, New York, 2005).

4. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

5. de Gennes, P. G. & Prost, J. The physics of Liquid Crystals 2nd edn. (Oxford Science Publications, Clarendon Press, Oxford, 1993).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3