Author:
Xiao Wen-sheng,Li Guang-xin,Liu Chao,Tan Li-ping
Abstract
AbstractWith the development of artificial intelligence, numerous researchers are attracted to study new heuristic algorithms and improve traditional algorithms. Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the foraging behavior of honeybees, which is one of the most widely applied methods to solve optimization problems. However, the traditional ABC has some shortcomings such as under-exploitation and slow convergence, etc. In this study, a novel variant of ABC named chaotic and neighborhood search-based ABC algorithm (CNSABC) is proposed. The CNSABC contains three improved mechanisms, including Bernoulli chaotic mapping with mutual exclusion mechanism, neighborhood search mechanism with compression factor, and sustained bees. In detail, Bernoulli chaotic mapping with mutual exclusion mechanism is introduced to enhance the diversity and the exploration ability. To enhance the convergence efficiency and exploitation capability of the algorithm, the neighborhood search mechanism with compression factor and sustained bees are presented. Subsequently, a series of experiments are conducted to verify the effectiveness of the three presented mechanisms and the superiority of the proposed CNSABC, the results demonstrate that the proposed CNSABC has better convergence efficiency and search ability. Finally, the CNSABC is applied to solve two engineering optimization problems, experimental results show that CNSABC can produce satisfactory solutions.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献