Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests

Author:

Usui A.,Hino H.,Suzushima D.,Tomioka N.ORCID,Suzuki Y.,Sunamura M.,Kato S.,Kashiwabara T.,Kikuchi S.,Uramoto G.-I.ORCID,Suzuki K.ORCID,Yamaoka K.ORCID

Abstract

AbstractRedox-sensitive metallic elements, Mn and Fe, are oxidized in deep sea waters and form abundant ferromanganese crusts and nodules on the world’s ocean floors at ultraslow rates of growth. This process of oxidation and the mechanism of precipitation are yet unknown. In this paper, the results of the first successful, long-term, on-site experiment of mineral precipitation that ascertains modern, ongoing hydrogenetic deposition of oxide materials from normal seawaters at water depths of 900–4500 m of geologically active and inactive environments are presented. We succeeded in the in-situ precipitation experiment on the sea floor and characterized the precipitates using high-resolution and submicron-scale chemical, mineralogical, and structural analyses. The installed artificial plates of glass, ceramics, and plastic yielded spread-out particles of sizes varying from one to a few micrometers in diameter, of coccoid-like irregular shapes, with a maximum of 1,000–10,000 individual particles/mm2/year after 12–15 years of exposure. The results indicated a continuous substantial growth of the hydrogenetic minerals if both Mn and Fe are supplied to the bottom waters. The mineralogical, chemical, and structural properties of the precipitates are similar to those of the natural precipitates on the seabed that are made up of hydrogenetic ferromanganese crusts and nodules, together with settling sediments, suspended hydrothermal particles, or microbial precipitates from cultivated Mn-oxidizing bacteria. Our work presents new realistic insight into proposed genetic models of marine hydrogenetic ferromanganese deposits in modern diverse ocean environments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3