Combining bird tracking data with high-resolution thermal mapping to identify microclimate refugia

Author:

Ramos Rita F.,Franco Aldina M. A.,Gilroy James J.,Silva João P.

Abstract

AbstractElevated temperatures can have a range of fitness impacts, including high metabolic cost of thermoregulation, hence access to microclimate refugia may buffer individuals against exposure to high temperatures. However, studies examining the use of microclimate refugia, remain scarce. We combined high resolution microclimate modelling with GPS tracking data as a novel approach to identify the use and availability of cooler microclimate refugia (sites > 0.5 °C cooler than the surrounding landscape) at the scales experienced by individual animals. 77 little bustards (Tetrax tetrax) were tracked between 2009 and 2019. The 92,685 GPS locations obtained and their surrounding 500 m areas were characterised with hourly temperature and habitat information at 30 m × 30 m and used to determine microclimate refugia availability and use. We found that the semi-natural grassland landscapes used by little bustards have limited availability of cooler microclimate areas—fewer than 30% of the locations. The use of cooler microclimate sites by little bustards increased at higher ambient temperatures, suggesting that individuals actively utilise microclimate refugia in extreme heat conditions. Microclimate refugia availability and use were greater in areas with heterogeneous vegetation cover, and in coastal areas. This study identified the landscape characteristics that provide microclimate opportunities and shelter from extreme heat conditions. Little bustards made greater use of microclimate refugia with increasing temperatures, particularly during the breeding season, when individuals are highly site faithful. This information can help identify areas where populations might be particularly exposed to climate extremes due to a lack of microclimate refugia, and which habitat management measures may buffer populations from expected increased exposure to temperature extremes.

Funder

Fundação para a Ciência e a Tecnologia

Norte Portugal Regional Operational Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3