Resonant subwavelength control of the phase of spin waves reflected from a Gires–Tournois interferometer

Author:

Sobucki Krzysztof,Śmigaj Wojciech,Rychły Justyna,Krawczyk Maciej,Gruszecki Paweł

Abstract

AbstractSubwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, which have revolutionized photonics. Despite similarities between different wave phenomena, other types of interactions can make subwavelength coupling significantly distinct; its investigation in their context is therefore of interest both from the physics and applications perspective. In this work, we demonstrate a fully magnonic Gires–Tournois interferometer based on a subwavelength resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film. The bilayer formed by the stripe and the film underneath supports two propagative spin-wave modes, one strongly coupled with spin waves propagating in the rest of the film and another almost completely reflected at the ends of the bilayer. When the Fabry–Perot resonance conditions for this mode are satisfied, the weak coupling between both modes is sufficient to achieve high sensitivity of the phase of waves reflected from the resonator to the stripe width and, more interestingly, also to the stripe-film separation. Such spin-wave phase manipulation capabilities are a prerequisite for the design of spin-wave metasurfaces and may stimulate development of magnonic logic devices and sensors detecting magnetic nanoparticles.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanism simulation of valveless micropump;International Conference on Mechatronic Engineering and Artificial Intelligence (MEAI 2023);2024-02-28

2. Micromagnetic simulation tools: OOMMF, Mumax3, and COMSOL Multiphysics;Magnetic Nanoparticles in Nanomedicine;2024

3. Magnon-Optic Effects with Spin-Wave Leaky Modes: Tunable Goos-Hänchen Shift and Wood’s Anomaly;Nano Letters;2023-07-31

4. Modal approach to modeling spin wave scattering;Physical Review B;2023-07-14

5. A frequency-domain micromagnetic simulation module based on COMSOL Multiphysics;AIP Advances;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3