Author:
Mills Ben,Grant-Jacob James A.,Praeger Matthew,Eason Robert W.,Nilsson Johan,Zervas Michalis N.
Abstract
AbstractCoherent beam combination of multiple fibres can be used to overcome limitations such as the power handling capability of single fibre configurations. In such a scheme, the focal intensity profile is critically dependent upon the relative phase of each fibre and so precise control over the phase of each fibre channel is essential. Determining the required phase compensations from the focal intensity profile alone (as measured via a camera) is extremely challenging with a large number of fibres as the phase information is obfuscated. Whilst iterative methods exist for phase retrieval, in practice, due to phase noise within a fibre laser amplification system, a single step process with computational time on the scale of milliseconds is needed. Here, we show how a neural network can be used to identify the phases of each fibre from the focal intensity profile, in a single step of ~ 10 ms, for a simulated 3-ring hexagonal close-packed arrangement, containing 19 separate fibres and subsequently how this enables bespoke beam shaping. In addition, we show that deep learning can be used to determine whether a desired intensity profile is physically possible within the simulation. This, coupled with the demonstrated resilience against simulated experimental noise, indicates a strong potential for the application of deep learning for coherent beam combination.
Funder
Engineering and Physical Sciences Research Council
Royal Academy of Engineering
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献