Author:
Zhang Rui,Zhang Huizhen,Wang Lai,Zeng Youling
Abstract
AbstractThe increasing global phenomenon of soil salinization has prompted heightened interest in the physiological ecology of plant salt and alkali tolerance. Halostachys caspica belonging to Amaranthaceae, an exceptionally salt-tolerant halophyte, is widely distributed in the arid and saline-alkali regions of Xinjiang, in Northwest China. Soil salinization and alkalinization frequently co-occur in nature, but very few studies focus on the interactive effects of various salt and alkali stress on plants. In this study, the impacts on the H. caspica seed germination, germination recovery and seedling growth were investigated under the salt and alkali stress. The results showed that the seed germination percentage was not significantly reduced at low salinity at pH 5.30–9.60, but decreased with elevated salt concentration and pH. Immediately after, salt was removed, ungerminated seeds under high salt concentration treatment exhibited a higher recovery germination percentage, indicating seed germination of H. caspica was inhibited under the condition of high salt-alkali stress. Stepwise regression analysis indicated that, at the same salt concentrations, alkaline salts exerted a more severe inhibition on seed germination, compared to neutral salts. The detrimental effects of salinity or high pH alone were less serious than their combination. Salt concentration, pH value, and their interactions had inhibitory effects on seed germination, with salinity being the decisive factor, while pH played a secondary role in salt-alkali mixed stress.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Litalien, A. & Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698(8), 134235 (2020).
2. Wang, J. C. et al. Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Front. Plant Sci. 7(30), 00110 (2016).
3. Rao, P. S., Mishra, B. & Gupta, S. R. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci. 20(2), 84–91 (2013).
4. Li, J. G. et al. Soil salinization research in China: Advances and prospects. J. Geog. Sci. 24, 943–960 (2014).
5. FAO I. Status of the world’s soil resources (SWSR)-main report[EB/OL]. In Food and Agriculture (2015).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献