Author:
El Khrepy Sami,Koulakov Ivan,Gerya Taras,Al-Arifi Nassir,Alajmi Mamdouh S.,Qadrouh Ayman N.
Abstract
AbstractLithosphere extension, which plays an essential role in plate tectonics, occurs both in continents (as rift systems) and oceans (spreading along mid-oceanic ridges). The northern Red Sea area is a unique natural geodynamic laboratory, where the ongoing transition from continental rifting to oceanic spreading can be observed. Here, we analyze travel time data from a merged catalogue provided by the Egyptian and Saudi Arabian seismic networks to build a three-dimensional model of seismic velocities in the crust and uppermost mantle beneath the northern Red Sea and surroundings. The derived structures clearly reveal a high-velocity anomaly coinciding with the Red Sea basin and a narrow low-velocity anomaly centered along the rift axis. We interpret these structures as a transition of lithospheric extension from continental rifting to oceanic spreading. The transitional lithosphere is manifested by a dominantly positive seismic anomaly indicating the presence of a 50–70-km-thick and 200–300-km-wide cold lithosphere. Along the forming oceanic ridge axis, an elongated low-velocity anomaly marks a narrow localized nascent spreading zone that disrupts the transitional lithosphere. Along the eastern margins of the Red Sea, several low-velocity anomalies may represent crustal zone of massive Cenozoic basaltic magmatism.
Funder
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Huismans, R. S. & Beaumont, C. Symmetric and asymmetric lithospheric extension: relative effects of frictional-plastic and viscous strain softening. J. Geophys. Res. 108, 1–13 (2003).
2. Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–79 (2011).
3. Liao, J. & Gerya, T. From continental rifting to seafloor spreading: insight from 3D thermo-mechanical modeling. Gondwana Res. 28(4), 1329–1343 (2015).
4. Koptev, A., Gerya, T., Calais, E., Leroy, S. & Burov, E. Afar triple junction triggered by plume-assisted bi-directional continental break-up. Sci. Rep. 8(1), 14742 (2018).
5. Brune, S. Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup. Geochem. Geophys. Geosyst. 15, 3392–3415. https://doi.org/10.1002/2014GC005446 (2014).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献