Author:
Vlasova Kseniya Yu.,Vishwasrao Hemant,Abakumov Maxim A.,Golovin Dmitry Yu.,Gribanovsky Sergey L.,Zhigachev Alexander O.,Poloznikov Andrey А.,Majouga Alexander G.,Golovin Yuri I.,Sokolsky-Papkov Marina,Klyachko Natalia L.,Kabanov Alexander V.
Abstract
AbstractRemote nano-magneto-mechanical actuation of magnetic nanoparticles (MNPs) by non-heating extremely low frequency magnetic field (ELF MF) is explored as a tool for non-invasive modification of bionanomaterials in pharmaceutical and medical applications. Here we study the effects of ELF MF (30–160 Hz, 8–120 kA/m) on the activity and release of a model enzyme, superoxide dismutase 1 (SOD1) immobilized by polyion coupling on dispersed MNPs aggregates coated with poly(L-lysine)-block-poly(ethylene glycol) block copolymer (s-MNPs). Such fields do not cause any considerable heating of MNPs but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations in adjacent materials. We observed the changes in the catalytic activity of immobilized SOD1 as well as its release from the s-MNPs/SOD1 polyion complex upon application of the ELF MF for 5 to 15 min. At longer exposures (25 min) the s-MNPs/SOD1 dispersion destabilizes. The bell-shaped effect of the field frequency with maximum at f = 50 Hz and saturation effect of field strength (between 30 kA/m and 120 kA/m at f = 50 Hz) are reported and explained. The findings are significant as one early indication of the nano-magneto-mechanical disruption by ELF MF of cooperative polyion complexes that are widely used for design of current functional healthcare bionanomaterials.
Funder
the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS
the Russian Foundation for Basic Research
Center for Strategic Scientific Initiatives, National Cancer Institute
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献