Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection

Author:

Liu Chunyan,Khan Muhammad Usman,Ramzan Muhammad,Chu Yu-Ming,Kadry Seifedine,Malik M. Y.,Chinram Ronnason

Abstract

AbstractStudies accentuating nanomaterials suspensions and flow traits in the view of their applications are the focus of the present study. Especially, the usage of such materials in biomedical rheological models has achieved great importance. The nanofluids’ role is essential in the cooling of small electronic gizmos like microchips and akin devices. Having such exciting and practical applications of nanofluids our goal is to scrutinize the Maxwell MHD nanofluid flow over an extended cylinder with nonlinear thermal radiation amalgamated with chemical reaction in a Darcy–Forchheimer spongy media. The presence of gyrotactic microorganisms is engaged to stabilize the nanoparticles in the fluid. The partial slip condition is considered at the boundary of the stretching cylinder. The Buongiorno nanofluid model is betrothed with impacts of the Brownian motion and thermophoresis. The analysis of entropy generation is also added to the problem. The highly nonlinear system is tackled numerically is addressed by the bvp4c built-in function of the MATLAB procedure. The outcomes of the prominent parameters versus embroiled profiles are portrayed and conversed deeming their physical significance. It is perceived that fluid temperature is augmented for large estimates of the radiation and Darcy parameters. Moreover, it is noticed that the magnetic and wall roughness parameters lower the fluid velocity. To corroborate the presented results, a comparison of the current study with a previously published paper is also executed. An outstanding correlation in this regard is attained.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3