Author:
Kibleur Pierre,Blykers Benjamin,Boone Matthieu N.,Van Hoorebeke Luc,Van Acker Joris,Van den Bulcke Jan
Abstract
AbstractThe distribution and good spreading of adhesive resins is critical for the wood-based panels industry. Full 3D non-destructive characterization is necessary, but methods are limited due to the chemical similarities between the resins and the wood fibers. For X-ray microtomography ($$\mu $$
μ
CT), the doping of the resin with a highly attenuating contrast agent is necessary to visualize the resin distribution. However, the attenuation signal remains hard to segment clearly due to partial volume effects in the image, and phase mixing in the material. To help in the identification of the doped resin, dual-energy X-ray CT (DECT) is used to exploit the contrast agent’s K-edge, based on simulations which take into account the polychromatic properties of the X-ray tube and detector response. The contrast agent’s identification with DECT is validated with elemental mapping using scanning electron microscopy combined with energy-dispersive spectroscopy (SEM-EDX) on the surface of a wood-based panel sample, using data fusion between DECT and SEM-EDX. Overall, DECT results here in the first 3D identification of doped resin inside wood fiberboards, guiding the industry’s efforts in further improving the durability of wood-based panels.
Funder
Fonds Wetenschappelijk Onderzoek
Special Research Fund of Ghent University
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献