Analysing nystagmus waveforms: a computational framework

Author:

Abadi Richard V.,Akman Ozgur E.,Arblaster Gemma E.,Clement Richard A.

Abstract

AbstractWe present a new computational approach to analyse nystagmus waveforms. Our framework is designed to fully characterise the state of the nystagmus, aid clinical diagnosis and to quantify the dynamical changes in the oscillations over time. Both linear and nonlinear analyses of time series were used to determine the regularity and complexity of a specific homogenous phenotype of nystagmus. Two-dimensional binocular eye movement recordings were carried out on 5 adult subjects who exhibited a unilateral, uniplanar, vertical nystagmus secondary to a monocular late-onset severe visual loss in the oscillating eye (the Heimann-Bielschowsky Phenomenon). The non-affected eye held a central gaze in both horizontal and vertical planes (± 10 min. of arc). All affected eyes exhibited vertical oscillations, with mean amplitudes and frequencies ranging from 2.0°–4.0° to 0.25–1.5 Hz, respectively. Unstable periodic orbit analysis revealed only 1 subject exhibited a periodic oscillation. The remaining subjects were found to display quasiperiodic (n = 1) and nonperiodic (n = 3) oscillations. Phase space reconstruction allowed attractor identification and the computation of a time series complexity measure—the permutation entropy. The entropy measure was found to be able to distinguish between a periodic oscillation associated with a limit cycle attractor, a quasiperiodic oscillation associated with a torus attractor and nonperiodic oscillations associated with higher-dimensional attractors. Importantly, the permutation entropy was able to rank the oscillations, thereby providing an objective index of nystagmus complexity (range 0.15–0.21) that could not be obtained via unstable periodic orbit analysis or attractor identification alone. These results suggest that our framework provides a comprehensive methodology for characterising nystagmus, aiding differential diagnosis and also permitting investigation of the waveforms over time, thereby facilitating the quantification of future therapeutic managements. In addition, permutation entropy could provide an additional tool for future oculomotor modelling.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference70 articles.

1. Ditchburn, R. W. Eye Movements and Visual Perception (Clarendon Press, Oxford, 1973).

2. Brodsky, M. C. Pediatric Neuro-Ophthalmology (Springer, Berlin, 2010).

3. Hertle, R. W. & Dell’Osso, L. F. Nystagmus in Infancy and Childhood: Current Concepts in Mechanisms, Diagnosis and Management (Oxford University Press, Oxford, 2013).

4. Leigh, R. J. & Zee, D. S. The Neurology of Eye Movements (Oxford University Press, Oxford, 2014).

5. Bedell, H. E. & Loshin, D. S. Interrelations between measures of visual acuity and parameters of eye movements in congenital nystagmus. Investig. Ophthalmol. Vis. Sci. 32, 416–421 (1991).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrophysiological analysis of ENG signals in patients with Covid-19;IBRO Neuroscience Reports;2023-12

2. Eye tracking in optometry: A systematic review;Journal of Eye Movement Research;2023-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3