Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population

Author:

Garrett Lucy J. H.ORCID,Myatt Julia P.ORCID,Sadler Jon P.ORCID,Dawson Deborah A.,Hipperson HelenORCID,Colbourne John K.ORCID,Dickey Roger C.,Weber Sam B.,Reynolds S. JamesORCID

Abstract

AbstractWhen and where animals breed can shape the genetic structure and diversity of animal populations. The importance of drivers of genetic diversity is amplified in island populations that tend to have more delineated gene pools compared to continental populations. Studies of relatedness as a function of the spatial distribution of individuals have demonstrated the importance of spatial organisation for individual fitness with outcomes that are conditional on the overall genetic diversity of the population. However, few studies have investigated the impact of breeding timing on genetic structure. We characterise the fine-scale genetic structure of a geographically-isolated population of seabirds. Microsatellite markers provide evidence for largely transient within-breeding season temporal processes and limited spatial processes, affecting genetic structure in an otherwise panmictic population of sooty ternsOnychoprion fuscatus. Earliest breeders had significantly different genetic structure from the latest breeders. Limited evidence was found for localised spatial structure, with a small number of individuals being more related to their nearest neighbours than the rest of the population. Therefore, population genetic structure is shaped by heterogeneities in collective movement in time and to a lesser extent space, that result in low levels of spatio-temporal genetic structure and the maintenance of genetic diversity.

Funder

RCUK | Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3