Liquid resistivity of pharmaceutical propellants using novel resistivity cell

Author:

Ahmad Hussein,Rasekh Manoochehr,Manivannan Nadarajah,Balachandran Wamadeva

Abstract

AbstractMetered-dose inhalers employ propellants to produce pharmaceutical aerosols for treating respiratory conditions like asthma. In the liquid phase, the DC volume resistivity of pharmaceutical propellants, including R134a, R152a, and R227ea, was studied at saturation pressures and room temperature (not vapour phase). These measurements are essential for industries like refrigerants. Aerosols from metered dose inhalers (MDIs) with these propellants become electrically charged, affecting medicament deposition in lung. The resistivity was measured using a novel concentric cylinder-type capacitance cell designed in-house. The resistivity for the propellants (R134a, R152a, and R227ea) was found to be 3.02 × 1010 Ωm, 2.37 × 109 Ωm and 1.31 × 1010 Ωm, respectively. The electrical resistivity data obtained was found to be at least two orders of magnitude higher than the limited data available in the literature. Challenges in the resistivity cell’s development and performance are discussed, with a focus on various propellants and their mixtures with ethanol and moisture concentrations. The resistivity of propellant mixtures containing moisture concentrations ranging from 5 to 500 ppm and ethanol concentrations ranging between 1000 and 125,000 ppm was determined. The resistivity was tested across 10-min and 1-h periods and was performed in accordance with the contemporary IEC 60247 standard.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference25 articles.

1. Hh, E. et al. Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) following whole-body exposure. Regul. Toxicol. Pharmacol. RTP 32, 896 (2000).

2. Kulkarni, V. S. & Shaw, C. Essential Chemistry for Formulators of Semisolid and Liquid Dosages (Elsevier Science, 2015).

3. Noakes, T. Medical aerosol propellants. J. Fluor. Chem. 118, 35–45 (2002).

4. Touchard, G. Flow electrification of liquids. J. Electrost. 51–52, 440–447 (2001).

5. Kontny, M. J. et al. Issues surrounding MDI formulation development with non-CFC propellants. J. Aerosol Med. 4, 181–187 (1991).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3