Author:
Altenburg Wiggert J.,Rollins Nathan,Silver Pamela A.,Giessen Tobias W.
Abstract
AbstractEncapsulins are recently discovered protein compartments able to specifically encapsulate cargo proteins in vivo. Encapsulation is dependent on C-terminal targeting peptides (TPs). Here, we characterize and engineer TP-shell interactions in the Thermotoga maritima and Myxococcus xanthus encapsulin systems. Using force-field modeling and particle fluorescence measurements we show that TPs vary in native specificity and binding strength, and that TP-shell interactions are determined by hydrophobic and ionic interactions as well as TP flexibility. We design a set of TPs with a variety of predicted binding strengths and experimentally characterize these designs. This yields a set of TPs with novel binding characteristics representing a potentially useful toolbox for future nanoreactor engineering aimed at controlling cargo loading efficiency and the relative stoichiometry of multiple concurrently loaded cargo proteins.
Funder
National Center for Research Resources
Hansjörg Wyss Institute for Biologically Inspired Engineering, Harvard University
National Institute of General Medical Sciences
Publisher
Springer Science and Business Media LLC
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献