Modelling optimal behavioural strategies in structured populations using a novel theoretical framework

Author:

Morozov Andrew,Kuzenkov Oleg A.,Arashkevich Elena G.

Abstract

Abstract Understanding complex behavioural patterns of organisms observed in nature can be facilitated using mathematical modelling. The conventional paradigm in animal behavior modelling consists of maximisation of some evolutionary fitness function. However, the definition of fitness of an organism or population is generally subjective, and using different criteria can lead us to contradictory model predictions regarding optimal behaviour. Moreover, structuring of natural populations in terms of individual size or developmental stage creates an extra challenge for theoretical modelling. Here we revisit and formalise the definition of evolutionary fitness to describe long-term selection of strategies in deterministic self-replicating systems for generic modelling settings which involve an arbitrary function space of inherited strategies. Then we show how optimal behavioural strategies can be obtained for different developmental stages in a generic von-Foerster stage-structured population model with an arbitrary mortality term. We implement our theoretical framework to explore patterns of optimal diel vertical migration (DVM) of two dominant zooplankton species in the north-eastern Black Sea. We parameterise the model using 7 years of empirical data from 2007-2014 and show that the observed DVM can be explained as the result of a trade-off between depth-dependent metabolic costs for grazers, anoxia zones, available food, and visual predation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference54 articles.

1. Durinx, M., Metz, J. H. & Meszéna, G. Adaptive dynamics for physiologically structured population models. Journal of Mathematical Biology 56, 673–742 (2008).

2. Broom, M. & Rychtár, J. Game-theoretical models in biology (CRC Press, 2013).

3. Gavrilets, S. Fitness landscapes and the origin of species (MPB-41), vol. 41 (Princeton University Press, 2004).

4. Davies, N. B., Krebs, J. R. &West, S. A. An introduction to behavioural ecology (John Wiley & Sons, 2012).

5. Birch, J. Natural selection and the maximization of fitness. Biological Reviews 91, 712–727 (2016).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3