Electrically controllable active plasmonic directional coupler of terahertz signal based on a periodical dual grating gate graphene structure

Author:

Morozov Mikhail Yu.,Popov Vyacheslav V.,Fateev Denis V.

Abstract

AbstractWe propose a concept of an electrically controllable plasmonic directional coupler of terahertz signal based on a periodical structure with an active (with inversion of the population of free charge carriers) graphene with a dual grating gate and numerically calculate its characteristics. Proposed concept of plasmon excitation by using the grating gate offers highly effective coupling of incident electromagnetic wave to plasmons as compared with the excitation of plasmons by a single diffraction element. The coefficient which characterizes the efficiency of transformation of the electromagnetic wave into the propagating plasmon has been calculated. This transformation coefficient substantially exceeds the unity (exceeding 6 in value) due to amplification of plasmons in the studied structure by using pumped active graphene. We have shown that applying different dc voltages to different subgratings of the dual grating gate allows for exciting the surface plasmon in graphene, which can propagate along or opposite the direction of the structure periodicity, or can be a standing plasma wave for the same frequency of the incident terahertz wave. The coefficient of unidirectionality, which is the ratio of the plasmon power flux propagating along (opposite) the direction of the structure periodicity to the sum of the absolute values of plasmon power fluxes propagating in both directions, could reach up to 80 percent. Two different methods of the plasmon propagation direction switching are studied and possible application of the found effects are suggested.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3