Author:
Oyama Shohei,Ebina Kosuke,Etani Yuki,Hirao Makoto,Kyuuma Masanao,Fujii Yasuyuki,Iwata Katsuya,Ogawa Bunichiro,Hasegawa Tomoya,Kawano Sasagu,Nakanishi Yutaka,Okada Seiji,Nakata Ken
Abstract
AbstractIn clinical studies, the next-generation anti-tumor necrosis factor-alpha (TNF-α) single domain antibody ozoralizumab showed high clinical efficacy shortly after the subcutaneous injection. To elucidate the mechanism underlying the rapid onset of the effects of ozoralizumab, we compared the biodistribution kinetics of ozoralizumab and adalimumab after subcutaneous injection in an animal model of arthritis. Alexa Fluor 680-labeled ozoralizumab and adalimumab were administered by subcutaneous injection once (2 mg/kg) at five weeks after induction of collagen-induced arthritis (CIA) in an animal arthritis model. The time-course of changes in the fluorescence intensities of the two compounds in the paws and serum were evaluated. The paws of the CIA mice were harvested at four and eight hours after the injection for fluorescence microscopy. Biofluorescence imaging revealed better distribution of ozoralizumab to the joint tissues than of adalimumab, as early as at four hours after the injection. Fluorescence microscopy revealed a greater fluorescence intensity of ozoralizumab in the joint tissues than that of adalimumab at eight hours after the injection. Ozoralizumab showed a significantly higher absorption rate constant as compared with adalimumab. These results indicate that ozoralizumab enters the systemic circulation more rapidly and is distributed to the target tissues earlier and at higher levels than conventional IgG antibodies. Our investigation provides new insight into the mechanism underlying the rapid onset of the effects of ozoralizumab in clinical practice.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献