Elevated tolerance of both short-term and continuous drought stress during reproductive stages by exogenous application of hydrogen peroxide on soybean

Author:

Basal Oqba,Zargar Tahoora Batool,Veres Szilvia

Abstract

AbstractThe global production of soybean, among other drought-susceptible crops, is reportedly affected by drought periods, putting more pressure on food production worldwide. Drought alters plants’ morphology, physiology and biochemistry. As a response to drought, reactive oxygen species (ROS) concentrations are elevated, causing cellular damage. However, lower concentrations of ROS were reported to have an alleviating role through up-regulating various defensive mechanisms on different levels in drought-stressed plants. This experiment was set up in a controlled environment to monitor the effects of exogenous spray of different (0, 1, 5 and 10 mM) concentrations of H2O2 on two soybean genotypes, i.e., Speeda (drought-tolerant), and Coraline (drought-susceptible) under severe drought stress conditions (induced by polyethylene glycol) during flowering stage. Furthermore, each treatment was further divided into two groups, the first group was kept under drought, whereas drought was terminated in the second group at the end of the flowering stage, and the plants were allowed to recover. After 3 days of application, drought stress significantly decreased chlorophyll-a and chlorophyll-b, total carotenoids, stomatal conductance, both optimal and actual photochemical efficiency of PSII (Fv/Fm and Df/Fm, respectively), relative water content, specific leaf area, shoot length and dry weight, and pod number and fresh weight, but significantly increased the leaf concentration of both proline and total soluble sugars, the root length, volume and dry weight of both genotypes. The foliar application of 1 mM and 5 mM H2O2 on Speeda and Coraline, respectively enhanced most of the decreased traits measurably, whereas the 10 mM concentration did not. The group of treatments where drought was maintained after flowering failed to produce pods, regardless of H2O2 application and concentration, and gradually deteriorated and died 16 and 19 days after drought application on Coraline and Speeda, respectively. Overall, Speeda showed better performance under drought conditions. Low concentrations of foliar H2O2 could help the experimented soybean genotypes better overcome the influence of severe drought during even sensitive stages, such as flowering. Furthermore, our findings suggest that chlorophyll fluorescence and the cellular content of proline and soluble sugars in the leaves can provide clear information on the influence of both drought imposition and H2O2 application on soybean plants.

Funder

University of Debrecen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3