Solid-state synthesis, magnetic and structural properties of interfacial B2-FeRh(001) layers in Rh/Fe(001) films

Author:

Myagkov V. G.,Ivanenko A. A.,Bykova L. E.,Zhigalov V. S.,Volochaev M. N.,Velikanov D. A.,Matsynin A. A.,Bondarenko G. N.

Abstract

AbstractHere we first report results of the start of the solid-state reaction at the Rh/Fe(001) interface and the structural and magnetic phase transformations in 52Rh/48Fe(001), 45Rh/55Fe(001), 68Rh/32Fe(001) bilayers from room temperature to 800 °C. For all bilayers the non-magnetic nanocrystalline phase with a B2 structure (nfm-B2) is the first phase that is formed on the Rh/Fe(001) interface near 100 °C. Above 300 °C, without changing the nanocrystalline B2 structure, the phase grows into the low-magnetization modification αlʹ (MSl ~ 825 emu/cm3) of the ferromagnetic αʹ phase which has a reversible αlʹ ↔ αʺ transition. After annealing 52Rh/48Fe(001) bilayers above 600 °C the αlʹ phase increases in grain size and either develops into αhʹ with high magnetization (MSh ~ 1,220 emu/cm3) or remains in the αlʹ phase. In contrast to αlʹ, the αhʹ ↔ αʺ transition in the αhʹ films is completely suppressed. When the annealing temperature of the 45Rh/55Fe(001) samples is increased from 450 to 800 °C the low-magnetization nanocrystalline αlʹ films develop into high crystalline perfection epitaxial αhʹ(001) layers, which have a high magnetization of ~ 1,275 emu/cm3. αhʹ(001) films do not undergo a transition to an antiferromagnetic αʺ phase. In 68Rh/32Fe(001) samples above 500 °C non-magnetic epitaxial γ(001) layers grow on the Fe(001) interface as a result of the solid-state reaction between the epitaxial αlʹ(001) and polycrystalline Rh films. Our results demonstrate not only the complex nature of chemical interactions at the low-temperature synthesis of the nfm-B2 and αlʹ phases in Rh/Fe(001) bilayers, but also establish their continuous link with chemical mechanisms underlying reversible αlʹ ↔ αʺ transitions.

Funder

Russian Foundation for Fundamental Investigations

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3