Double gate operation of metal nanodot array based single electron device

Author:

Gyakushi Takayuki,Amano Ikuma,Tsurumaki-Fukuchi Atsushi,Arita Masashi,Takahashi Yasuo

Abstract

AbstractMultidot single-electron devices (SEDs) can enable new types of computing technologies, such as those that are reconfigurable and reservoir-computing. A self-assembled metal nanodot array film that is attached to multiple gates is a candidate for use in such SEDs for achieving high functionality. However, the single-electron properties of such a film have not yet been investigated in conjunction with optimally controlled multiple gates because of the structural complexity of incorporating many nanodots. In this study, Fe nanodot-array-based double-gate SEDs were fabricated by vacuum deposition, and their single-electron properties (modulated by the top- and bottom-gate voltages; VT and VB, respectively) were investigated. The phase of the Coulomb blockade oscillation systematically shifted with VT, indicating that the charge state of the single dot was controlled by both the gate voltages despite the metallic random multidot structure. This result demonstrates that the Coulomb blockade oscillation (originating from the dot in the multidot array) can be modulated by the two gates. The top and bottom gates affected the electronic state of the dot unevenly owing to the geometrical effect caused by the following: (1) vertically asymmetric dot shape and (2) variation of the dot size (including the surrounding dots). This is a characteristic feature of a nanodot array that uses self-assembled metal dots; for example, prepared by vacuum deposition. Such variations derived from a randomly distributed nanodot array will be useful in enhancing the functionality of multidot devices.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3