Network pharmacology, computational biology integrated surface plasmon resonance technology reveals the mechanism of ellagic acid against rotavirus

Author:

Zheng Jiangang,Haseeb Abdul,Wang Ziyang,Wang Hejie

Abstract

AbstractThe target and mechanism of ellagic acid (EA) against rotavirus (RV) were investigated by network pharmacology, computational biology, and surface plasmon resonance verification. The target of EA was obtained from 11 databases such as HIT and TCMSP, and RV-related targets were obtained from the Gene Cards database. The relevant targets were imported into the Venny platform to draw a Venn diagram, and their intersections were visualized. The protein–protein interaction networks (PPI) were constructed using STRING, DAVID database, and Cytoscape software, and key targets were screened. The target was enriched by Gene Ontology (GO) and KEGG pathway, and the ‘EA anti-RV target-pathway network’ was constructed. Schrodinger Maestro 13.5 software was used for molecular docking to determine the binding free energy and binding mode of ellagic acid and target protein. The Desmond program was used for molecular dynamics simulation. Saturation mutagenesis analysis was performed using Schrodinger's Maestro 13.5 software. Finally, the affinity between ellagic acid and TLR4 protein was investigated by surface plasmon resonance (SPR) experiments. The results of network pharmacological analysis showed that there were 35 intersection proteins, among which Interleukin-1β (IL-1β), Albumin (ALB), Nuclear factor kappa-B1 (NF-κB1), Toll-Like Receptor 4 (TLR4), Tumor necrosis factor alpha (TNF-α), Tumor protein p53 (TP53), Recombinant SMAD family member 3 (SAMD3), Epidermal growth factor (EGF) and Interleukin-4 (IL-4) were potential core targets of EA anti-RV. The GO analysis consists of biological processes (BP), cellular components (CC), and molecular functions (MF). The KEGG pathways with the highest gene count were mainly related to enteritis, cancer, IL-17 signaling pathway, and MAPK signaling pathway. Based on the crystal structure of key targets, the complex structure models of TP53-EA, TLR4-EA, TNF-EA, IL-1β-EA, ALB-EA, NF-κB1-EA, SAMD3-EA, EGF-EA, and IL-4-EA were constructed by molecular docking (XP mode of flexible docking). The MMGBS analysis and molecular dynamics simulation were also studied. The Δaffinity of TP53 was highest in 220 (CYS → TRP), 220 (CYS → TYR), and 220 (CYS → PHE), respectively. The Δaffinity of TLR4 was highest in 136 (THR → TYR), 136 (THR → PHE), and 136 (THR → TRP). The Δaffinity of TNF-α was highest in 150 (VAL → TRP), 18 (ALA → GLU), and 144 (PHE → GLY). SPR results showed that ellagic acid could bind TLR4 protein specifically. TP53, TLR4, and TNF-α are potential targets for EA to exert anti-RV effects, which may ultimately provide theoretical basis and clues for EA to be used as anti-RV drugs by regulating TLR4/NF-κB related pathways.

Funder

PhD research startup foundation of changzhi medical college

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3