Inverting angiogenesis with interstitial flow and chemokine matrix-binding affinity

Author:

Moure Adrian,Vilanova Guillermo,Gomez Hector

Abstract

AbstractThe molecular signaling pathways that orchestrate angiogenesis have been widely studied, but the role of biophysical cues has received less attention. Interstitial flow is unavoidable in vivo, and has been shown to dramatically change the neovascular patterns, but the mechanisms by which flow regulates angiogenesis remain poorly understood. Here, we study the complex interactions between interstitial flow and the affinity for matrix binding of different chemokine isoforms. Using a computational model, we find that changing the matrix affinity of the chemokine isoform can invert the effect of interstitial flow on angiogenesis—from preferential growth in the direction of the flow when the chemokine is initially matrix-bound to preferential flow against the flow when it is unbound. Although fluid forces signal endothelial cells directly, our data suggests a mechanism for the inversion based on biotransport arguments only, and offers a potential explanation for experimental results in which interstitial flow produced preferential vessel growth with and against the flow. Our results point to a particularly intricate effect of interstitial flow on angiogenesis in the tumor microenvironment, where the vessel network geometry and the interstitial flow patterns are complex.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3