Author:
Ratha Satyajit,Sahoo Surjit,Mane Pratap,Polai Balaram,Sathpathy Bijoy,Chakraborty Brahmananda,Nayak Saroj Kumar
Abstract
AbstractThe advancements in electrochemical capacitors have noticed a remarkable enhancement in the performance for smart electronic device applications, which has led to the invention of novel and low-cost electroactive materials. Herein, we synthesized nanostructured Al2O3 and Al2O3-reduced graphene oxide (Al2O3-rGO) hybrid through hydrothermal and post-hydrothermal calcination processes. The synthesized materials were subject to standard characterisation processes to verify their morphological and structural details. The electrochemical performances of nanostructured Al2O3 and Al2O3- rGO hybrid were evaluated through computational and experimental analyses. Due to the superior electrical conductivity of reduced graphene oxide and the synergistic effect of both EDLC and pseudocapacitive behaviour, the Al2O3- rGO hybrid shows much improved electrochemical performance (~ 15-fold) as compared to bare Al2O3. Further, a symmetric supercapacitor device (SSD) was designed using the Al2O3- rGO hybrid electrodes, and detailed electrochemical performance was evaluated. The fabricated Al2O3- rGO hybrid-based SSD showed 98.56% capacity retention when subjected to ~ 10,000 charge–discharge cycles. Both the systems (Al2O3 and its rGO hybrid) have been analysed extensively with the help of Density Functional Theory simulation technique to provide detailed structural and electronic properties. With the introduction of reduced graphene oxide, the available electronic states near the Fermi level are greatly enhanced, imparting a significant increment in the conductivity of the hybrid system. The lower diffusion energy barrier for electrolyte ions and higher quantum capacitance for the hybrid structure compared to pristine Al2O3 justify improvement in charge storage performance for the hybrid structure, supporting our experimental findings.
Funder
NALCO
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Kumar, S. et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021).
2. Patra, A. et al. Understanding the charge storage mechanism of supercapacitors: In situ/operando spectroscopic approaches and theoretical investigations. J. Mater. Chem. A 9, 25852–25891 (2021).
3. Kandasamy, M., Sahoo, S., Nayak, S. K., Chakraborty, B. & Rout, C. S. Recent advances in engineered metal oxide nanostructures for supercapacitor applications: Experimental and theoretical aspects. J. Mater. Chem. A 9, 17643–17700 (2021).
4. Zhao, J. & Burke, A. F. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 59, 276–291 (2021).
5. Sahoo, S., Ratha, S., Rout, C. S. & Nayak, S. K. Self-charging supercapacitors for smart electronic devices: A concise review on the recent trends and future sustainability. J. Mater. Sci. 2, 1–42 (2022).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献