A data-driven approach to the “Everesting” cycling challenge

Author:

Seo Junhyeon,Raeymaekers Bart

Abstract

AbstractThe “Everesting” challenge is a cycling activity in which a cyclist repeats a hill until accumulating an elevation gain equal to the elevation of Mount Everest in a single ride. The challenge experienced a surge in interest during the COVID-19 pandemic and the cancelation of cycling races around the world that prompted cyclists to pursue alternative, individual activities. The time to complete the Everesting challenge depends on the fitness and talent of the cyclist, but also on the length and gradient of the hill, among other parameters. Hence, preparing an Everesting attempt requires understanding the relationship between the Everesting parameters and the time to complete the challenge. We use web-scraping to compile a database of publicly available Everesting attempts, and we quantify and rank the parameters that determine the time to complete the challenge. We also use unsupervised machine learning algorithms to segment cyclists into distinct groups according to their characteristics and performance. We conclude that the power per unit body mass of the cyclist and the tradeoff between the gradient of the hill and the distance are the most important considerations when attempting the Everesting challenge. As such, elite cyclists best select a hill with gradient > 12%, whereas amateur and recreational cyclists best select a hill with gradient < 10% to minimize the time to complete the Everesting challenge.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference26 articles.

1. Jacobson, A. How to Cycle Up ‘Mount Everest’. The New York Times (2020).

2. Marc Abbott. Inside the cult of Everesting. The Telegraph (2015).

3. RIDE RULES. Everesting https://everesting.cc/the-rules/.

4. More than 1,000 cyclists completed an Everesting in May. VeloNews.com https://www.velonews.com/culture/more-than-1000-cyclists-completed-everesting-in-may/ (2020).

5. EVERESTING. Everesting https://everesting.cc/everesting-2/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3