Reduced model-based decision-making in gambling disorder

Author:

Wyckmans FlorentORCID,Otto A. Ross,Sebold MiriamORCID,Daw Nathaniel,Bechara Antoine,Saeremans Mélanie,Kornreich Charles,Chatard Armand,Jaafari Nemat,Noël Xavier

Abstract

AbstractCompulsive behaviors (e.g., addiction) can be viewed as an aberrant decision process where inflexible reactions automatically evoked by stimuli (habit) take control over decision making to the detriment of a more flexible (goal-oriented) behavioral learning system. These behaviors are thought to arise from learning algorithms known as “model-based” and “model-free” reinforcement learning. Gambling disorder, a form of addiction without the confound of neurotoxic effects of drugs, showed impaired goal-directed control but the way in which problem gamblers (PG) orchestrate model-based and model-free strategies has not been evaluated. Forty-nine PG and 33 healthy participants (CP) completed a two-step sequential choice task for which model-based and model-free learning have distinct and identifiable trial-by-trial learning signatures. The influence of common psychopathological comorbidities on those two forms of learning were investigated. PG showed impaired model-based learning, particularly after unrewarded outcomes. In addition, PG exhibited faster reaction times than CP following unrewarded decisions. Troubled mood, higher impulsivity (i.e., positive and negative urgency) and current and chronic stress reported via questionnaires did not account for those results. These findings demonstrate specific reinforcement learning and decision-making deficits in behavioral addiction that advances our understanding and may be important dimensions for designing effective interventions.

Funder

Fonds De La Recherche Scientifique - FNRS

Brugmann Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3