Agricultural intensification in Lake Naivasha Catchment in Kenya and associated nutrients and pesticides pollution

Author:

Onyango Joel,Kitaka Nzula,van Bruggen J. J. A.,Irvine Kenneth,Simaika John

Abstract

AbstractInvestments in agricultural intensification in sub-Saharan Africa aim to fulfill food and economic demands. However, the increased use of fertilizers and pesticides poses ecological risks to water bodies in agricultural catchments. This study focused on assessing the impact of agricultural intensification on nutrient and pesticide pollution in the L. Naivasha catchment in Kenya. The research revealed significant changes in the catchment’s agricultural landscape between 1989 and 2019, driven by intensified agricultural expansion. As a result, nutrient and pesticide emissions have worsened the lake’s trophic status, shifting it towards hypereutrophic conditions. The study found a weak relationship between total nitrogen (TN) and sum dichlorodiphenyltrichloroethane (∑DDT), indicating that an increase in TN slightly predicted a reduction in ∑DDT. Analysis also showed potential phosphorus (P) limitation in the lake. Additionally, the observed ratio between dichlorodiphenyldichloroethane and dichlorodiphenyldichloroethylene (DDD:DDE) and (DDE + DDD):DDT ratios suggest recent use of banned DDT in the catchment. The study concludes that the transformation of L. Naivasha landscape shows unsustainable agricultural expansion with reduced forest cover, increased croplands, and increased pesticide contamination. This reflects a common issue in sub-Saharan Africa, that sustainable catchment management must address, specifically for combined pollutants, to support water quality and achieve the SDGs in agriculture.

Funder

Koninklijke Nederlandse Akademie van Wetenschappen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3