Author:
Chen Wenjia,Ou Yiwen,Cheng Chunfu,Zhu Yuanchang,Xiao Wen,Lv Hui
Abstract
AbstractA novel active fiber cavity ringdown (FCRD) technique using frequency-shifted interferometry (FSI) is proposed for the first time. Using this scheme, external parameters can be monitored in the space domain by measuring the ringdown distance instead of ringdown time. A bidirectional erbium-doped fiber amplifier (Bi-EDFA) is employed to compensate the inherent cavity loss for achieving higher sensitivity. And two band-pass filters are used to reduce the amplified spontaneous emission (ASE) noise of the Bi-EDFA. Compared with the well-known time-domain active FCRD scheme, our proposed method enables us to avoid using pulsed laser needed in time-domain active FCRD, it uses continuous-wave laser to inject into the fiber cavity and stabilize the optical power in the fiber cavity, which can suppress the baseline drift of ringdown signal caused by the gain fluctuations of the EDFA and thus improve the detecting precision. Moreover, this novel method enables us to use differential detection method for further reducing the ASE noise, and thus eliminating the baseline drift of ringdown signal. A magnetic field sensor was developed as a proof-of-concept demonstration. The experimental results demonstrate that the proposed sensor with a sensitivity of 0.01537 (1/km·Gs) was achieved. This is the highest magnetic field sensitivity compared to the time-domain active FLRD method. Due to the reduced ASE noise, the stability of the proposed sensing system was also greatly improved.
Funder
National Natural Science Foundation of China
Outstanding young and middle-aged science and technique innovation team of colleges and universities in Hubei province
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献