Comparative study of NiO/CuO/Ag doped graphene based materials for reduction of nitroaromatic compounds and degradation of dye with statistical study

Author:

Pandey Gayatri,Singh Nidhi,Rajput Nitesh,Saini Mahesh Kumar,Kothari S. L.,Prasad Jagdish,Lamba Narendra Pal,Chauhan Manmohan Singh

Abstract

AbstractIn the present work, the Nickel oxide (rGO–NiO), Silver (rGO–Ag), Copper oxide (rGO–CuO) doped Graphene Oxide are reported for catalytic reactions. A comparative study for catalytic activities of these materials are performed with nitroaromatic compound 4-nitroaniline and the results are statistically studied by using univariate analysis of variance and Post Hoc Test through Statistical Package for Social Sciences and it is observed that CuO doped Graphene material is showing better catalytic activity in minimum time. So, further research has been focused on the catalytic acitivity of rGO–CuO only and it is found that it is efficient in reducing other nitro compounds also such as Picric acid and Nitrobenzene. Dye degradation of Methylene blue is also performed using CuO decorated Graphene material and significant changes were observed using UV spectroscopy. The characterization of rGO–CuO is done with Fourier-transform Infrared Spectroscopy, Powder X-ray Diffraction, Thermogravimetric Analysis, Scanning Electron Microscope and Transmission Electron Microscopy.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3