Synthesis of Hollow Pt-Ni Nanoboxes for Highly Efficient Methanol Oxidation

Author:

Jamil Rabia,Sohail Manzar,Baig Nadeem,Ansari Muhammad S.,Ahmed Riaz

Abstract

Abstract In direct methanol fuel cell technology, highly stable electrochemical catalysts are critically important for their practical utilization at the commercial scale. In this study, sub ~10 nm hollow Pt-Ni (1:1 at. ratio) nanoboxes supported on functionalized Vulcan carbon (Pt-Ni/C-R2) were synthesized through a facile method for the efficient electrooxidation of methanol. Two reaction procedures, namely, a simultaneous reduction and a modified sequential reduction method using a reverse microemulsion (RME) method, were adopted to synthesize solid Pt-Ni NPs and hollow nanoboxes, respectively. To correlate the alloy composition and surface structure with the enhanced catalytic activity, the results were compared with the nanocatalyst synthesized using a conventional NaBH4 reduction method. The calculated electroactive surface area for the Pt-Ni/C-R2 nanoboxes was 190.8 m2.g−1, which is significantly higher compared to that of the Pt-Ni nanocatalyst (96.4 m2.g−1) synthesized by a conventional reduction method. Hollow nanoboxes showed 34% and 44% increases in mass activity and rate of methanol oxidation reaction, respectively, compared to solid NPs. These results support the nanoreactor confinement effect of the hollow nanoboxes. The experimental results were supported by Density Functional Theory (DFT) studies, which revealed that the lowest CO poisoning of the Pt1Ni1 catalyst among all Ptm-Nin mixing ratios may account for the enhanced methanol oxidation. The synthesized hollow Pt-Ni/C (R2) nanoboxes may prove to be a valuable and highly efficient catalysts for the electrochemical oxidation of methanol due to their low cost, numerous catalytically active sites, low carbon monoxide poisoning, large electroactive surface area and long-term stability.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3