Author:
Khan MD Ikramullah,Ram V. Vinayaka,Patel Vipulkumar Ishvarbhai
Abstract
AbstractThis study examines the effect of coarse recycled aggregates (CRAs) and processed coarse recycled aggregates (PCRAs) on the behaviour of alkali-activated concrete (AAC) before and after exposure to marine seawater and acidic environments (5% HCl and 5% H2SO4 solutions). Measurements of compressive strength and the microstructure changes were conducted over periods of 56 and 90 days to assess these effects. The experimental design included varying the replacement levels of NAs with CRAs and PCRAs from (0–100%) and using ground-granulated blast furnace slag and fly ash as constant components. In addition to durability tests, sorptivity assessments were conducted to gauge the material’s porosity and water absorption capabilities. Advanced microstructure techniques, such as scanning electron microscopy (SEM) and X-ray diffraction (XRD), were employed to detail the pre and post-exposure mineralogical and microstructural transformations within the AAC blends. The AAC mixtures incorporating PCRAs emerged as durable, showcasing better strength and a denser, more compact matrix facilitated by the synergistic formation of NASH and CASH gels after exposure to aggressive agents compared to untreated CRAs. In addition, the results show that the samples exposed to marine seawater exhibited improved mechanical performance compared to those exposed to acidic environments. The novelty of this study lies in its exploration of the effects of recycling plant-based CRAs and PCRAs on AAC for marine and acid exposure.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献