Machine learning methods to predict amyloid positivity using domain scores from cognitive tests

Author:

Shan Guogen,Bernick Charles,Caldwell Jessica Z. K.,Ritter Aaron

Abstract

AbstractAmyloid-$$\beta$$ β (A$$\beta$$ β ) is the target in many clinical trials for Alzheimer’s disease (AD). Preclinical AD patients are heterogeneous with regards to different backgrounds and diagnosis. Accurately predicting A$$\beta$$ β status of participants by using machine learning (ML) models based on easily accessible data, could improve the effectiveness of AD clinical trials. We will develop optimal ML models for each subpopulation stratified by sex and disease stages using sub scores from screening neurological tests. Data from the AD Neuroimaging Initiative (ADNI) were used to build the ML models, for three groups: individuals with significant memory concern, early mild cognitive impairment (MCI), and late MCI. Data were further separated into 6 groups by disease stage (3 levels) and sex (2 categories). The outcome was defined as the A$$\beta$$ β status confirmed by the PET imaging, and the features include demographic data, newly identified risk factors, screening tests, and the domain scores from screening tests. Monte Carlo simulation studies were used together with k-fold cross-validation technique to compute model performance metric. We also develop a new feature selection method based on the stochastic ordering to avoiding searching all possible combinations of features. Accuracy of the identified optimal model for SMC male was over 90% by using domain scores, and accuracy for LMCI female was above 86%. Domain scores can improve the ML model prediction as compared to the total scores. Accurate ML prediction models can identify the proper population for AD clinical trials.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3