Development of a deep learning method for improving diagnostic accuracy for uterine sarcoma cases

Author:

Toyohara Yusuke,Sone Kenbun,Noda Katsuhiko,Yoshida Kaname,Kurokawa Ryo,Tanishima Tomoya,Kato Shimpei,Inui Shohei,Nakai Yudai,Ishida Masanori,Gonoi Wataru,Tanimoto Saki,Takahashi Yu,Inoue Futaba,Kukita Asako,Kawata Yoshiko,Taguchi Ayumi,Furusawa Akiko,Miyamoto Yuichiro,Tsukazaki Takehiro,Tanikawa Michihiro,Iriyama Takayuki,Mori-Uchino Mayuyo,Tsuruga Tetsushi,Oda Katsutoshi,Yasugi Toshiharu,Takechi Kimihiro,Abe Osamu,Osuga Yutaka

Abstract

AbstractUterine sarcomas have very poor prognoses and are sometimes difficult to distinguish from uterine leiomyomas on preoperative examinations. Herein, we investigated whether deep neural network (DNN) models can improve the accuracy of preoperative MRI-based diagnosis in patients with uterine sarcomas. Fifteen sequences of MRI for patients (uterine sarcoma group: n = 63; uterine leiomyoma: n = 200) were used to train the models. Six radiologists (three specialists, three practitioners) interpreted the same images for validation. The most important individual sequences for diagnosis were axial T2-weighted imaging (T2WI), sagittal T2WI, and diffusion-weighted imaging. These sequences also represented the most accurate combination (accuracy: 91.3%), achieving diagnostic ability comparable to that of specialists (accuracy: 88.3%) and superior to that of practitioners (accuracy: 80.1%). Moreover, radiologists’ diagnostic accuracy improved when provided with DNN results (specialists: 89.6%; practitioners: 92.3%). Our DNN models are valuable to improve diagnostic accuracy, especially in filling the gap of clinical skills between interpreters. This method can be a universal model for the use of deep learning in the diagnostic imaging of rare tumors.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3