Design and analysis of virtual impedance control scheme based on MESOGI for improving harmonic sharing of nonlinear loads

Author:

Kherbachi Abdelhammid,Bendib Ahmed,Chouder Aissa,Ahmed Hafiz,Benbouzid Mohamed,Motahhir Saad

Abstract

AbstractUnder the presence of nonlinear load, the most existing virtual impedance (VI) methods-based control solution performs poorly in reactive power sharing among droop-operated VSIs in microgrids (MGs). This may be due to the involved estimation techniques for extracting the current harmonics at selected frequencies, which suffer from either poor accuracy of the harmonic estimation and/or the effect of DC offset in the measurements. Such an issue may affect the performance of the virtual impedance control, hence, the system stability. To bridge this gap, the implementation of the virtual impedance based on multiple enhanced second-order generalized integrator (MESOGI) suitable for harmonics and DC-offset estimation/rejection, is proposed in this paper. The MESOGI can offer an accurate estimation of the current quadrature components free from DC offset at selected frequencies, required to implement the virtual impedance control. Therefore, it makes the designed virtual impedance-based control scheme robust to voltage distortions, immune to DC disturbance, and capable of sharing properly the power harmonics. As a result, this may contribute to improving the reactive and harmonic power-sharing between droop-controlled VSIs within an islanded MG. The modeling of the MESOGI scheme and its performance investigation is carried out. In addition, the mathematical model of the implemented virtual impedance is derived. Further, analysis based on the obtained model of the equivalent output impedance including virtual impedance is established to study its effect. Simulation and experimental tests are performed to prove the effectiveness of the control proposal in improving the reactive power sharing under nonlinear load operating conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3