Evaluation of the relationship between the 14-3-3ε protein and LvRab11 in the shrimp Litopenaeus vannamei during WSSV infection

Author:

Boonyoung Guson,Panrat Tanate,Phongdara Amornrat,Wanna Warapond

Abstract

AbstractThe 14-3-3 proteins interact with a wide variety of cellular proteins for many diverse functions in biological processes. In this study, a yeast two-hybrid assay revealed that two 14-3-3ε isoforms (14-3-3ES and 14-3-3EL) interacted with Rab11 in the white shrimp Litopenaeus vannamei (LvRab11). The interaction of 14-3-3ε and LvRab11 was confirmed by a GST pull-down assay. The LvRab11 open reading frame was 645 bp long, encoding a protein of 214 amino acids. Possible complexes of 14-3-3ε isoforms and LvRab11 were elucidated by in silico analysis, in which LvRab11 showed a better binding energy score with 14-3-3EL than with 14-3-3ES. In shrimp challenged with the white spot syndrome virus (WSSV), the mRNA expression levels of LvRab11 and 14-3-3ε were significantly upregulated at 48 h after challenge. To determine whether LvRab11 and binding between 14-3-3ε and LvRab11 are active against WSSV infection, an in vivo neutralization assay and RNA interference were performed. The results of in vivo neutralization showed that LvRab11 and complexes of 14-3-3ε/LvRab11 delayed mortality in shrimp challenged with WSSV. Interestingly, in the RNAi experiments, the silencing effect of LvRab11 in WSSV-infected shrimp resulted in decreased ie-1 mRNA expression and WSSV copy number. Whereas suppression of complex 14-3-3ε/LvRab11 increased WSSV replication. This study has suggested two functions of LvRab11 in shrimp innate immunity; (1) at the early stage of WSSV infection, LvRab11 might play an important role in WSSV infection processes and (2) at the late stage of infection, the 14-3-3ε/LvRab11 interaction acquires functions that are involved in immune response against WSSV invasion.

Funder

The government budget of Prince of Songkla University

The Research Assistant Fund from Faculty of Science

Thailand Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3