Quantifying gadolinium-based nanoparticle uptake distributions in brain metastases via magnetic resonance imaging

Author:

Bennett Stephanie,Verry Camille,Kaza Evangelia,Miao Xin,Dufort Sandrine,Boux Fabien,Crémillieux Yannick,de Beaumont Olivier,Le Duc Géraldine,Berbeco Ross,Sudhyadhom Atchar

Abstract

AbstractAGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ($${T}_{1}$$ T 1 ) relaxation. A 3T MRI and MP2RAGE sequence were used to generate patient $${T}_{1}$$ T 1 maps. AGuIX uptake in tumors was determined based on longitudinal relaxivity. AGuIX (or placebo) was administered to 23 patients intravenously at 100 mg/kg 1–5 hours pre-imaging. Each of 129 brain metastases across 23 patients were captured in $${T}_{1}$$ T 1 maps and examined for AGuIX uptake and distribution. Inferred AGuIX recipients had average tumor uptakes between 0.012 and 0.17 mg/ml, with a mean of 0.055 mg/ml. Suspected placebo recipients appeared to have no appreciable uptake. Tumors presented with varying spatial AGuIX uptake distributions, suspected to be related to differences in accumulation time and patient-specific bioaccumulation factors. This research demonstrates AGuIX's ability to accumulate in brain metastases, with quantifiable uptake via $${T}_{1}$$ T 1 mapping. Future analyses will extend these methods to complete clinical trial data (~ 134 patients) to evaluate the potential relationship between nanoparticle uptake and possible tumor response following radiotherapy.Clinical Trial Registration Number: NCT04899908.Clinical Trial Registration Date: 25/05/2021.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3