Abstract
AbstractCell-containing collagen gels are one of the materials employed in tissue engineering and drug testing. A collagen gel is a useful three-dimensional (3D) scaffold that improves various cell functions compared to traditional two-dimensional plastic substrates. However, owing to poor nutrient availability, cells are not viable in thick collagen gels. Perfusion is an effective method for supplying nutrients to the gel. In this study, we maintained hepatocytes embedded in a 3D collagen gel using a simple pump-free perfusion cell culture system with ordinary cell culture products. Flow was generated by the difference in water level in the culture medium. Hepatocytes were found to be viable in a collagen gel of thickness 3.26 (± 0.16 S.E.)-mm for 3 days. In addition, hepatocytes had improved proliferation and gene expression related to liver function in a 3D collagen gel compared to a 2D culture dish. These findings indicate that our perfusion method is useful for investigating the cellular functions of 3D hydrogels.
Funder
Adaptable and Seamless Technology Transfer Program through Target-Driven R and D
Global Station for Soft Matter, a project of Global Institution for Collaborative Research and Education at Hokkaido University
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献