Modelling environmental DNA transport in rivers reveals highly resolved spatio-temporal biodiversity patterns

Author:

Carraro LucaORCID,Blackman Rosetta C.ORCID,Altermatt FlorianORCID

Abstract

AbstractThe ever-increasing threats to riverine ecosystems call for novel approaches for highly resolved biodiversity assessments across taxonomic groups and spatio-temporal scales. Recent advances in the joint use of environmental DNA (eDNA) data and eDNA transport models in rivers (e.g., eDITH) allow uncovering the full structure of riverine biodiversity, hence elucidating ecosystem processes and supporting conservation measures. We applied eDITH to a metabarcoding dataset covering three taxonomic groups (fish, invertebrates, bacteria) and three seasons for a catchment sampled for eDNA at 73 sites. We upscaled eDNA-based biodiversity predictions to approximately 1900 reaches, and assessed α- and β-diversity patterns across seasons and taxonomic groups over the whole network. Genus richness predicted by eDITH was generally higher than values from direct eDNA analysis. Both predicted α- and β-diversity varied depending on season and taxonomic group. Predicted fish α-diversity increased downstream in all seasons, while invertebrate and bacteria α-diversity either decreased downstream or were unrelated to network position. Spatial β-diversity mostly decreased downstream, especially for bacteria. The eDITH model yielded a more refined assessment of freshwater biodiversity as compared to raw eDNA data, both in terms of spatial coverage, diversity patterns and effect of covariates, thus providing a more complete picture of freshwater biodiversity.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3